Aircraft Equations of Motion:
Flight Path Computation

Robert Stengel, Aircraft Flight Dynamics, MAE 331,
2018

Learning Objectives
How is a rotating reference frame described in an
inertial reference frame?
Is the transformation singular?
Euler Angles vs. quaternions
What adjustments must be made to expressions
for forces and moments in a non-inertial frame?
How are the 6-DOF equations implemented in a
computer?
Aerodynamic damping effects

Reading:
Flight Dynamics
161-180
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Euler-Angle Rates and Body-Axis Rates
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Avoiding the Euler Angle Singularity
at 6= =%x90°

= Alternatives to Euler angles
- Direction cosine (rotation) matrix
- Quaternions

Propagation of direction cosine matrix (9 parameters)

Hih, =@ Hh,

| Consequently I 0 —r(t) q(t)

H] (1) =-0,(t)H/(1)=—| r(t) 0 -p() | H(1)

Hf (O): Hf (q)o’eo"//o) 6




Avoiding the Euler Angle Singularity
at 6 = =90°

Propagation of quaternion vector: single rotation
from inertial to body frame (4 parameters)

* Rotation from one axis
system, /, to another, B,
represented by

= Orientation of axis vector
about which the rotation
occurs (3 parameters of a unit
vector, ay, a,, and a,)

= Magnitude of the rotation
angle, 0, rad

Checklist

Q Are the components of the Euler Angle rate
vector orthogonal to each other?

QO Is the inverse of the transformation from
Euler Angle rates to body-axis rates the
transpose of the matrix?

0 What complication does the inverse
transformation introduce?




Rigid-Body
Equations of Motion

- Inertial rate of change of translational position

Point-Mass
Dynamics

u
. 1 Ve=| v
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- Body-axis rate of change of translational velocity

— Identical to angular-momentum transformation
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Rigid-Body Equations of Motion
(Euler Angles)

« Translational

Position
X
- * Rate of change of . I
r=|y —
. Translational Position r[ (t) - HB (t) Vg (t)
. I;ngular
osition - Rate of change of - 1
o - q; Angular Position 91 (t) = LB (t) Wy (t)
=
IIJ 1
. ;I',rz-:nslational
elocity u + Rate of change of ] 1
v,=| v Translational Velocity VB(’)=m(,)FR(t)+H 1(1)g, =@, (1)v, (1)
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* Angular ’
Velocity * Rate of change of -
w0,-| 4 Angular Velocity |(i)3(t) =1, (t)[MB(t)_wB(t)]IB(t)(DB(t)]l
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: Aircraft Characteristics
N\\ | Expressed in Body Frame
of Reference

Aerodynamic Xaero + Xitrus e+ Cxin Cx
?:r?: ;hrust F,=| Y, +Y,., | =| G +C, | =pV’S=| C, | g$
Zaero + Zthruxl Czu, + Zitrust CZ B
| Lotly || (GrCl) ch |
ﬁ‘l?‘tjosctiy;(a)m::n?nd My=| Mo+ My | = (Cm‘,,,,, +C, )C —pVS=| C,c | g§
Noeero + N 5 (CAM +C, ) b C.b 1s
B
Inertia r, -I, -I. Reference Lengths
matrix I,=\ -I, I, -I, b = wing span
-1, -I, I, ! ¢ = mean aerodynamic chord| |,




Rigid-Body Equations of Motion:
Position

Rate of change of Translational Position

X, = (cochoszp)u + (—cosqbsimp + sin¢sin60051p)v + (sinq)sinzp + cosqﬁsinBcosw)w
b (cos@simp)u + (cosq)cosw + sind)sin@simp)v + (—sin(pcosw + cosqbsin@simp)w

(-sinB)u +(singcos)v +(cospcos@)w
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Rate of change of Angular Position

g=p+ (qsimp + rcos¢)tan0
0 = gcos¢p — rsing
Y =(gsing + rcosg)sec
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Rigid-Body Equations of Motion:
Rate

Rate of change of Translational Velocity

u=X/m-gsin@+rv-qw

v=Y/m+gsingcosO-ru+ pw

Ww=Z7Z/m+gcos¢pcosO+qu— pv

Rate of change of Angular Velocity

p= (]ZZZL+][HN—{ZZH(][W I -I)p+[ I+ (I, —Jzyy)]r}q) /(szzza 1)
I:M —(l[m—]fzz)pr—][xz(p2 —r2)}/][yy

pe (b B N {1 (1, -1 - )r+ [ 1 (1 -1, |p}a) (1D, - 12)

q

I Mirror symmetry, Ixz 0 I 14




Checklist

U Why is it inconvenient to solve momentum rate
equations in an inertial reference frame?

U Are angular rate and momentum vectors
aligned?

U How are angular rate equations transformed
from an inertial to a body frame?

15

FLIGHT -
Computer Program fo
Solve the 6-DOF
Equations of Motion

16




FLIGHT - MATLAB Program

* FLIGHT -- 6~DOF Trim, Lihear Model, and Flight Path Simulation
% October 19, 2008
§  ShSr i S S
® Copyright 1993-2008 by ROBERT F. STENGEL. All rights reserved.
clear
global GEAR CONTROL SPOIL u x V parhis
* This is the SCRIPT FILE. It contains the Main Program, which:
] Defines initial conditions
% Calculates longitudinal trim condition
% Calculates stability-and-control derivatives
® Simulates flight path using nonlinear equations of motion
* Functions used by FLIGHT:
% AeroModel.m Aerodynamic coefficients of the aircraft, thrust mode
% and geometric and inertial properties
* Atmos.m Air density, sound speed
% ControlSystem.m Control law
% .m Direction-cosine matrix
% EoM.m Equations of motion for integration
% LinModel.m Equations of motion for linear model definition
* TrimCost.m Cost function for trim solution
% WindField.m Wind velocity components
% DEFINITION OF THE STATE VECTOR
L] x(1) = Body-axis x inertial velocity, ub, m/s
® x(2) = Body-axis y inertial velocity, vb, m/s
% x(3) = Body-axis z inertial velocity, wb, m/s
% X(4) = North position of center of mass WRT Earth, xe, m
% x(5) = East position of center of mass WRT Earth, ye, m
% x(6) = Negative of c.m. altitude WRT Earth, ze = -h, m
% x(7) = Body-axis roll rate, pr, rad/s
% x(8) = Body-axis pitch rate, qr, rad/s
% x(9) = Body-axis yaw rate, rr,rad/s
L] x(10) = Roll angle of body WRT Earth, phir, rad
% x(11) = Pitch angle of body WRT Earth, thetar, rad
% x(12) = Yaw angle of body WRT Earth, psir, rad

http//www.princeton.edu/~stengel/FlightDynamics.html 17
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FLIGHT - MATLAB Program

DEFINITION OF THE CONTROL VECTOR
u(l) = Elevator, dEr, rad

u(2) = Aileron, dAr, rad

u(3) = Rudder, dRr, rad

u(4) = Throttle, dT, %

u(s) = Asymmetric Spoiler, dasr, rad
u(6) = Flap, dFr, rad

u(7) = Stabilator, dsr, rad

BEGINNING of MAIN PROGRAM

D L T T L]

'FLIGHT'

date

FLIGHT Flags (1 = ON, 0 = OFF)

TRIM = 1; % Trim flag (= 1 to calculate trim)

LINEAR = 1; % Linear model flag (= 1 to calculate F and G)
SIMUL = 1; % Flight path flag (= 1 for nonlinear simulation)
GEAR = 0; % Landing gear DOWN (= 1) or UP (= 0)

SPOIL = ’ % Symmetric Spoiler DEPLOYED (= 1) or CLOSED (= 0)
CONTROL = 5 % Feedback control ON (= 1) or OFF (= 0)

dfF = 0; % Flap setting, deg

http://www.princeton.edu/~stengel/FlightDynamics.html|
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FLIGHT, Version 2 (FLIGHTver2.m)

+ Provides option for calculating rotations
with quaternions rather than Euler angles

+ Input and output via Euler angles in both
cases

+ Command window output clarified

* On-line at
http:/www.princeton.edu/~stengel/FDcode
B.html

Examples from FLIGHT

20

10
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Bizjet, M = 0.3, Altitude = 3,052 m

Pitch rate, deg/s
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» For a symmetric aircraft, longitudinal
perturbations do not induce lateral-
directional motions
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Side velocity, m/s

HQII and yaw rates, deg/s

Transient Response

to Initial Roll Rate

Lateral-Directional Response
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Bizjet, M = 0.3, Altitude = 3,052 m
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For a symmetric aircraft, lateral-
directional perturbations do induce
longitudinal motions




Side velocity, m/s
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yaw rates, deg/s

Roll and
L

Transient Response to
Initial Yaw Rate
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Crossplot of Transient
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Checklist

U Does longitudinal response couple into lateral-
directional response?

U Does lateral-directional response couple into
longitudinal response?

25

Aerodynamic Damping

26
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Pitching Moment due to Pitch Rate

27

Angle of Attack Distribution
Due to Pitch Rate

Aircraft pitching at a constant rate, g rad/s, produces a
normal velocity distribution along x

Corresponding angle of attack distribution
_Aw_ —qAx
VoV

Angle of attack perturbation at tail center of pressure

Aa

Ao, = ‘i |lht = horizontal tail distance from c.m.l

Vv

28
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Horizontal Tail Lift
Due to Pitch Rate

Incremental tail lift due to pitch rate, referenced to tail area, Sy,

AL, = (ACL,,, )m %szSht

Incremental tail lift coefficient due to pitch rate, referenced
to wing area, S

S ac,, ac,, 1,
(8€,,), =(8C1), (?h) = ngﬁ Aa] - ( WJﬁ (‘17:)

Lift coefficient sensitivity to pitch rate referenced to wing area

.. dac,), . :(a%j ( I )
aircraft

an J q oo Vv

29

Moment Coefficient
Sensitivity to Pitch Rate of
the Horizontal Tail

Differential pitch moment due to pitch rate

IAM, 1 (1 )1 )
—*=C_ —pVSc=-C 2= pV?3Se
aq My 2p Lo \%4 2p

()]s
aa aircraft V ¢ 2

Coefficient derivative with respect to pitch rate

12T
Mana dou \V )\ ¢ do \ C %4

30




Pitch-Rate Derivative Definitions

Pitch-rate derivatives are often expressed

in terms of a normalized pitch rate

IIl>

qE
2V

- _9C, _

dC

_ m

ny 3&

d(gc/2V)

(5 )

Pitching moment sensitivity to pitch rate

C

my

_adC, ( c
dq 2V

2

oM

r=Cn (pVv?/2)s=C,, (%)[

% o pvSe’
2 m 4

|
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Roll Damping Due to Roll Rate

<0 for stability | =C, (ﬂj Sh?
[|:| "\ 4

2 2
SCTO

Js»

>

<z

Vertical tail, horizontal tail, and wing

are principal contributors

Roll damping of wing with taper

a(ACl )Wing CLu
e
ing ap

_(1+3A)
201+7

For thin triangular wing

NACA-TR-1098, 1952
NACA-TR-1052, 1951

(Cl’a )Wing -

(

[
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1\ ‘ Roll Damping Due
to Roll Rate

Tapered vertical tail

(©,), = AAC), S, (Sv, )(1+ 3;\)

ap 122 (s )N\1+2

Tapered horizontal tail

ip 12

(c,) - aac),  Cu, (sm )(1+ 3/1)

? 1+ A

pb/2V describes helix angle
for a steady roll

33

Yaw Damping Due to Yaw Rate

2 2
c &Y szcn(ij PV_ s
\ 2 2v )l 2
=cn(ﬂ)5b2
< 0 for stability i 4

Normalized yaw rate

b
2V

r=

34
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Yaw Damping Due
to Yaw Rate

Vertical tail contribution

A (Cn )Vgr{ira] Tail (C"/i )W,M, Tail (rl%) = (C"ﬁ )vg,,,'wl Tail ( %j ( %) r

_ aA(C" )Verlical Tail __ aA(C")

(Cn; )W _ a(r%v) _ a;erliml Tail _ _2(C,, 5 )Vertl_wl Tail (i)

Wing contribution
(€0 )y = K2+ KC,,

site, Wing
ko and kj are functions of NACA-TR-1098, 1952
aspect ratio and sweep angle NACA-TR-1052, 1951 35
Checklist

U What is the primary source of pitch damping?
U What is the primary source of yaw damping?
U What is the primary source of roll damping?

U What is the difference between

C, andC, ?

q

36
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Myihideal/Historial Facivlds

Daedalus and Icarus, father and son,
Attempt to escape from Crete (<630 BC)

Other human-powered
airplanes that didn’ t work

‘Edward Frost (1902)

19



AeroVironment Gossamer Condor

Winner of the 15t Kremer Prize: Figure 8 around pylons half-mile apart

1
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AeroVironment Gossamer Albatross
and MIT Monarch

2nd Kremer Prize: crossing the English Channel (1979)

Gene Larrabee, 'Mr. Propeller' of human-powered flight, dies at 82 (1/11/2003)
“The Albatross' pilot could stay aloft only 10 minutes at first. With (Larrabee’s)
propeller, he stayed up for over an hour on his first flight .... There was no way the
Albatross could cross the Channel, which took almost three hours, without
(Larrabee’s) propeller.” (D. Wilson)

20



MIT Daedalus

Flew 74 miles across the Aegean Sea, completing Daedalus’ s
intended flight (1988)

FAl WORLD RECORDS
Distance , Duration

10-055ID CF spar
Foomulor Keviar -epexy shell
Rl 55 @ 2 S

Wing area 32391t

o i ; e T
Bilot_power ~0.27hp
DAEDALUS Y -

HUMAN POWERED FLIGHT TEAM AL BL 1 acina %o e s o A AIAAAOZ

Next Time:
Aircraft Control Devices

and Sysfems

Reading:
Flight Dynamics
214-234

Learning Objectives

Control surfaces
Control mechanisms
Powered control
Flight control systems
Fly-by-wire control
Nonlinear dynamics and aero/mechanical instability
42
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Supplemental
YPaterial

43

Airplane Angular Attitude (Position)

X1
9 (negative, from x;)

Y

X2 =Xp

' Inertial
», Frame
]

(v.6.9)

« Eul

er angles

3 angles that relate one
Cartesian coordinate frame to
another

defined by sequence of 3
rotations about individual axes
intuitive description of angular
attitude

Euler angle rates have a
nonlinear relationship to body-
axis angular rate vector
Transformation of rates is
singular at 2 orientations,
+90°

44
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Airplane Angular Attitude (Position)

Hf((b’e’W) =

hll
h21
h3]

h 12 hl 3
h 22 h23
h 32 h33

1

H; (9.0.y) = Hi(¢)H; (0)H; (y)
[H0.00)] =[HI@.00)] =H,1.0.9)

* Rotation matrix

- orthonormal transformation
inverse = transpose

linear propagation from one attitude to
another, based on body-axis rate vector

+ 9 parameters, 9 equations to solve

+ solution for Euler angles from parameters

is intricate

45

Airplane Angular Attitude (Position)

Rotation Matrix

H; (¢.0,y)=H}(¢)H; (6)H,(y)

Hf((b’e’l//):
1 0 0 cosf@ 0 —sinf siny 0
0 cosp sing 0O 1 0 —siny  cosy 0
0 —sing cos¢ sin@ 0 cos6 0 1
H/(9.0.y)=
cos@cosy cos@siny —sin@
—cos@siny +singsin@cosy | cosgcosy +sin@sinfsiny | singcosf
sin@siny +cos¢sinfcosy | —sin@cosy +cos@sin@siny | cospcosO

H7H,, =1 for all (¢,0,y),i.e., No Singularities

46
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Airplane Angular Attitude (Position)

Rotation Matrix = Direction Cosine Matrix

p A
75 %s
Angles between —
each /axis and each ™
B axis
Yi
cosd,, C€o0s0, Co0s0;,
B \> XB
H, =| cosd, co0sd,, cosds, ooy
cosd;; C€0s0,; CO0SOy, ortial

Frame

Euler Angle Dynamics

1 sin¢gtanf cos@tan6 p
0 cos ¢ —sing q

0 sin¢secO cos¢psectH r

L, is not orthonormal

L, is singular when 6=+90°

.2

48
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Rigid-Body Equations of Motion
(Euler Angles)

£, () = Hi, (1)v, (1)

©,(t1)=L,(1)w,(¢)| |H,,H? are functions of @

~

¥y (1) = ——F, (1) + HY (1)g, — @, (1)v, (¢)

49

Rotation Matrix Dynamics

Hih,=®h, =@ H,h,| |6-

wl

_wy

_wz

0 -o,

wX

w,

0

l

¥l I
HB_(DIHB

~

H? = _(DBH?

50
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Rigid-Body Equations of Motion
(Attitude from 9-Element Rotation Matrix)

. I

r, = HBVB
Hf = _(I)BHf
1 B

Vp = ;FB + ngl — WV,

w,=I;(M, -&,1,0,)

No need for Euler angles to solve the dynamic equatiscl)ns

Euler Rotation of a Vector

Rotation of a vector to an arbitrary new orientation
can be expressed as a single rotation about an axis
at the vector’s base

|:r, —(aTr,)a]cosQ

a,
al . Orientation of rotation axis
’ in reference frame

£: Rotation angle

52
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Euler’s Rotation Theorem

i B
_Vector transformation r, = HI r,
involves 3 components

- (aTr, )a + [r, — (aTr, )a}cos!) +sinQ(r, x a)

=cos Qr, +(1—cosQ)(aTr,)a—sinQ(axr,)

|:r, - (aTr, )a]cosQ

sin.Q(r, X a)

Rotation Matrix
Derived from
Euler’s Formula

r,=H/r, =cosQr, +(1—cosQ)(aTr,)a—sinQ(ﬁr,)

Identity

(aTr,)a: (aaT)r,

Rotation matrix

H; =cosQL,+(1-cos)aa’ —sinQa

54
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Quaternion Derived from Euler
Rotation Angle and Orientation

Quaternion vector
4 parameters based on Euler’s formula

9, “
@ {_ﬂz_]_[_fi‘l(f)_/_z_)f_} Sin(g/z)[ J (4x1)

4-parameter representation of 3 parameters;
hence, a constraint must be satisfied

a'q=¢"+q," +¢, " +q,’
=sin’(£2/2)+cos’(£2/2)=1

55

Rotation Matrix Expressed with
Quaternion

From Euler’s formula

H119 = I:%z - (q3 ! q3)i|13 + 2q3q3T -2q,4;

Rotation matrix from quaternion

H -
@-a-0+4  2an+aq.) 299 -04.)
2(99 - 9:9s) ~G -G +di 2(995+0i4,)
2995+ 0.9.)  2(095-049.) -4 -4 +4+ 4

56




Quaternion Expressed from
Elements of Rotation Matrix

Initialize q(0) from Direction Cosine Matrix or Euler Angles

hll (:005511) h]2 h13
H? (0)= h,, hy,  hy sz<¢o’003W0)
h, h

32 h33

q, (O) = %\/l+hll(0)+h22 (0)+h33 (0)

Assuming that q,#0

q, (O) [h23(0)_h32(0)]
(13(0)é 9, (O) :M;(O) [h31(0)—h13(0)]
.(0) | ] [3(0)= 1y (0)] 5

Quaternion Vector Kinematics

. d| 94 1| 9.0,—0,q,
q=— e (4x1)
dt 44 2 —W; q;

Differential equation is linear in either q or wg

g, 0 ®, -0 0, q,
q, _ 1| —O, 0 0, o, q,
q, 2 ®, -0, 0 o, q,
q, -0, -0, -0, 0 q,
L i i 1Lt i

58




Propagate Quaternion Vector
Using Body-Axis Angular Rates

[ 2() a@) r() |2 0. o, o ]

g,(1) 0 r(t) —q(r) p(r) a,(1)

dq(t) | @) | 1| -r() 0 p() 4q(t) || a()

dt | gr) | 2| q(t) -p(t) O  r(t) q5()
| @) || -p) —at) —r() 0 || a(r)

Digital integration to compute q(t)

ine (tk): q(tk—1)+ T dqd—(:)d’f

Tk
59

Euler Angles Derived from Quaternion

|

- atan2: generalized arctangent algorithm, 2 arguments
— returns angle in proper quadrant
— avoids dividing by zero
— has various definitions, e.g., (MATLAB)

tan” (X) ifx>0

X

= Sinil[z(%% _%%)]

] atan2{2(qlq4 +%‘Iz)’[1_2(412+q22)]}
atan2{2(q3q4 + ql‘Iz)»[l - 2(‘122 +a5 )]}

< o

atan2(y,x)= 7t+tan‘l(l),—7r+tan'](l) ifx<0andy>0,<0
x X

n/2 ,-7/2 ifx=0andy>0,<0
0 ifx=0and y=0 60
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Successive Rotations Expressed
by Products of Quaternions and
Rotation Matrices

Rotation from Frame 4 : Rotation from A to B

A to Frame C through q;, : Rotation from B to C

Intermediate Frame B .
ermedia q : Rotation from A to C

Matrix Multiplication Rule
C Cc\_ C C B B
HS(q5)=H;(q5)H}(q})
Quaternion Multiplication Rule
-1C C B B C ~ \C B

I: q, [ (%)B q3A+(Q4)Aq33_(q3)B ! EY

A
(Q4 )Z (‘14 )j - (q3§ )T qsi

C

q,

A

61

Rigid-Body Equations of Motion
(Attitude from 4-Element Quaternion Vector)

. I
r, = HBVB

q=Qq| |H’ ,H? are functions of q
B 1

. 1 B .
V= ZFB +H,g, —w,v,

62

31



Alternative Reference
Frames

63

Velocity Orientation in an Inertial
Frame of Reference

| Polar Coordinates | | Projected on a Sphere |

h axis
v, | Vs

O Aircraft center of mass
yaxis 1|, "

X axis

Z axis

64
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Body Orientation with Respect
to an Inertial Frame

Xg axis @

X, axis

Aircraft
center of mass

y, axis

Zgaxis  y, axis

v Z, axis
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Relationship of Inertial Axes
to Body Axes

- Transformation is Xg
independent of
velocity vector v,
+ Represented by B
— Euler angles Vo= HI Vy
— Rotation matrix w
VZ
XI vx
v. |=HL| v
y B
w
vZ

1
Ve 66
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Velocity-Vector Components
of an Aircraft

Velocity Orientation with Respect
to the Body Frame

| Polar Coordinates | | Projected on a Sphere |

zgaxis VB axis
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Relationship of Inertial Axes
to Velocity Axes

+ No reference to the body

frame Xg

+ Bank angle, u, is roll angle
about the velocity vector

v, Vcosy cos§
v, | =| Vcosysin§
v, -Vsiny X,
v JVvivi eyl
7 z, g |=| sin™ [vy/(vf_ +vy2)”2]
Y sin™ (-v, /V)
69
Relationship of Body Axes
to Wind Axes
v Xs
* No reference to B = sin
the inertial frame = tan” (w/u)

Ve

u Vcosacos 8 1% Vu? +v? +w?
v |= Vsin B |=| sin'(v/v)
w Vsinacos a tan” (w/u)
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Angles Projected
on the Unit Sphere

Origin is airplane’s
center of mass

a:angle of attack

B : sideslip angle

y :vertical flight path angle

& : horizontal flight path angle

W : yaw angle

6: pitch angle

¢ : roll angle (about body x — axis)

u:bank angle (about velocity vector)
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Alternative Frames of Reference

- Orthonormal transformations connect all reference frames

Intermediate
Frame 4

2

Velocity
Axes

Intermediate
Frame 1

Intermediate
Frame 2

Intermediate
Frame 3

72

36



