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Frames of Reference
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= |nertial Frames
= Earth-Relative
= Wind-Relative (Constant Wind)

Pitch Angle, 6

Angle of Attack, o

= Non-Inertial Frames
= Body-Relative
= Wind-Relative (Varying Wind)

Flight Path Angle,y

Wind Velocity

Earth-Relative Velocity

Air-Relative Velocity
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http://www.princeton.edu/~stengel/FlightDynamics.html
http://adg.stanford.edu/aa241/AircraftDesign.html

Pitch Angle and Normal Velocity
Frequency Response to Axial Wind
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= Pitch angle resonance at phugoid natural frequency

= Normal velocity (~ angle of attack) resonance at phugoid and
short period natural frequencies
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MacRuer, Ashkenas, and Graham, 1973

Pitch Angle and Normal Velocity
Frequency Response to Vertical Wind
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= Pitch angle resonance at phugoid and short period natural frequencies
= Normal velocity (~ angle of attack) resonance at short period natural frequency
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Sideslip and Roll Angle Frequency
Response to Vortical Wind
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= Sideslip angle resonance at Dutch roll natural frequency
= Roll angle is integral of vortical wind input
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Sideslip and Roll Angle
Frequency Response to Side Wind
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= Sideslip and roll angle resonance at Dutch roll natural frequency
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Microbursts
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1/2-3-km-wide High-speed outflow

“Jet”impinges on surface 3 from jet core

Outflow strong enough to
knock down trees

Ring vortex
forms in
outlow

The Insidious Nature of
Microburst Encounter

= The wavelength of the phugoid mode and the disturbance
input are comparable

DELTA 191 (Lockheed L-1011)
http:/lwww.youtube.com/watch?v=BxxxevZ0IbQ&NR=1
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Importance of Proper Response
to Microburst Encounter
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= Windshear alert issued as 1016 began descent along glideslope

= DC-9 encountered 61-kt windshear, executed missed approach

= Go-around procedure begun correctly -- aircraft's nose rotated up -- but
power was not advanced

= Together with increasing tailwind, aircraft stalled

= Crew lowered nose to eliminate stall, but descent rate increased,
causing ground impact

= Plane continued to descend, striking trees and telephone poles before impact

http://en.wikipedia.org/wiki/US_Airways_Flight 1016

Importance of Proper Response
to Microburst Encounter

USAir McDonnell Douglas DC-9-31 N
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= Stormy evening July 2, 1994

= USAIir Flight 1016, Douglas DC-9, Charlotte

= Windshear alert issued as 1016 began descent along glideslope
= DC-9 encountered 61-kt windshear, executed missed approach

= Plane continued to descend, striking trees and telephone poles
before impact

= Go-around procedure was begun correctly -- aircraft's nose rotated
up -- but power was not advanced
= That, together with increasing tailwind, caused the aircraft to stall

= Crew lowered nose to eliminate stall, but descent rate increased,
causing ground impact
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= Graduate research of Mark Psiaki

= Joint Aviation Weather Study (JAWS)
measurements of microbursts (Colorado
High Plains, 1983)

= Negligible deviation from intended path
using available controllability

= Aircraft has sufficient performance
margins to stay on the flight path
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= Graduate Research of Sandeep Mulgund

= Altitude vs. Time
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» FAA Windshear Training Aid, 1987, addresses proper
operating procedures for suspected windshear

Optimal and 15° Pitch
Angle Recovery during

Microburst Encounter
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Geometry and Flight Condition of Jet
Transport Encounters with Wind Rotor
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= Graduate research
of Darin Spilman

» Flight Condition

= True Airspeed = 160 kt \
« Altitude = 1000 ft AGL )«-— p——
« Flight Path Angle = -3° [/ vortex
= Weight = 76,000 Ib a) co-axial, y =0 S
° L \N\(\
= Flaps =30 o?
= Open-Loop Control S

= Wind Rotor );7, o= —
= Maximum Tan%ential P
Velocity = 125 {t/s b) ¢ =0
= Core Radius = 200 ft

Typical Flight Paths in
Wind Rotor Encounter
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Linear-Quadratic/Proportional-
Integral Filter (LQ/PIF) Regulator
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Wind Rotor Encounter
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Wake Vortices
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C-5A Wing Tip Vortex Flight Test
https://www.youtube.com/watch?v=uyOhgG2pkUs

L-1011 Wing Tip Vortex Flight Test
https://www.youtube.com/watch?v=AM4R2K7HqOg

300
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t
Tangential
Velocity,
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Models of Single and Dual
Wake Vortices
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Wake Vortex Descent and
Downwash
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Wake Vortex Descent and
Effect of Crosswind
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= from FAA Wake Turbulence Training Aid, 1995

Flightpath

500 to 900 feet

.. Levels off in approximately
5 nm in approach configuration
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Magnitude and Decay of
B-757 Wake Vortex
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= from Richard Page et al, FAA Technical Center
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NTSB Simulation of US Air 427 g
and FAA Wake Vortex Flight Testl —w——
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USAIr Flight 427
Aliquippa, PA

September 8, 1994
Boeing 737-300

= B-737 behind B-727 in FAA flight test

= Control actions subsequent to wake vortex
encounter may be problematical

= US427 rudder known to be hard-over from DFDR
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Flying Into the Wake

Preliminary readings from American Airlines Flight 587's data recorder show that the
Atrbus A300 lwice ran inlo turbulence. After the second blast, the plane careened sideways
- seconds before it crashed. The turbulence apparently was caused by the wake of a Japan
Airlines 747 flying ahead and above, Wake turbulence can last for minules as it slowly

drops and moves with prevailing winds.
Elevation and ground plots of planes based on radar tracks

Japan Aidines  American Airfines
i - N , Flight 47 Flight 587
4 ~hn 2 moh from the northwest
Wind about 12 mph from the northwest TIME- 913 m TIME 97445 4 m
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SOURCE: Mational Transportation Satety Board
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W Digital Flight Data Recorder
Data for American 587
American Airlines, N14083,
Belle Harbor, New York November 12, 2001 208 .
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Causes of
Clear Air Turbulence
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= from Bedard

Cold Air Gooler Air
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DC-10 Encounter with Vortex-
Induced Clear Air Turbulence

I EEEEE

= from Parks, Bach, Wingrove, and Mehta

FLIGHT
RECORDER

INERTIAL DATA
NTSE
READOUT AIR DATA

)
o
S

ESTIMATED FROM FLIGHT RECORDER

................

" VORTEX MODEL

HORIZONTAL
WIND W, koots
2
&

g

VERTICAL
WIND W, ft/sec
'

EQUATIONS {wINDS | W,
¢ [WINDS | Wy

40,000 © o]

MOTION L A o-0- FLIGHTPATH

ARCHAFT 0ATA |

ALTITUDE, R

| 10,0001 |
DISYANCE

DC-8 and B-52H Encounters ”_

oo,

with Clear Air Turbulence s

B ]

= DC-8: One engine and 12 ft of

wing missing after CAT encounter
over Rockies

= B-52 specially instrumented for
air turbulence research after
some operational B-52s were lost

= Vertical tail lost after a severe and
sustained burst (+5 sec) of clear
air turbulence violently buffeted
the aircraft

= The Boeing test crew flew aircraft
to Blytheville AFB, Arkansas and
landed safely

g B-52H 'Stratofortress®
USAF Museum P| A
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Conclusions

I

= Critical role of decision-making, alerting, and
intelligence

= Reliance on human factors and counter-
intuitive strategies

* Need to review certification procedures

= Opportunity to reduce hazard through flight
control system design
= Disturbance rejection
= Failure Accommodation

* Importance of Eternal vigilance
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Supplemental
Material
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Alternative Reference Frames
for Translational Dynamics
... | J 1 1 | I I [9j
VE
= Earth-relative velocity in earth- v,=| v
fixed polar coordinates: g e
= Earth-relative velocity in v,
aircraft-fixed polar coordinates ve=| Be
(zero wind): a,
= Body-frame air-mass-relative (u-u,) y
velocity: va=| (=w) |-
(w—ww) Wy
= Airspeed, sideslip angle, angle v, JZ+view?
of attack B, |=| sin(v,/v,)
a, tan™ (w, /V,)

Rigid-Body Equations of Motion
[ | I I [ [ [[s}
C Rnatonatamion " Postion e o Anauar

= Aerodynamic forces and moments depend on air-relative velocity
vector, not the earth-relative velocity vector

= Rate of change of . 1 B ~
Translational Velocity Vg = _FB (VA ) + HI g, — WV,
m

= Rate of change of . -1 ~
Angular Velocity (O =IB [MB(VA)—(DBIBO.)B]

Pitch Angle, 8

Angle of Attack, &
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= 3-dimensional wind
field changes in
space and time

= Gradient of wind
produces different
relative airspeeds
over the surface of
an aircraft

= Wind gradient
expressed in body
axes

WB = Hl;WEHg

wE(X’t) =

w, (x,y,z,t)
wy (x,y,z,t)
wz(x,y,z,t)

E

ow fox ow [Jdy ow [oz
W, =| dw,/ox ow fay ow, [oz
aw,[ox aw, [dy ow,[dz
ow av
AC, =C —-C —
shear Pwing &y Pfin ax
aw
AC =~ -
Mgpear Mavving body stab ox
av
AC, = -—
M " fin body Ix

Wind Shear Distributions Exert Moments
on Aircraft Through Damping Derivatives
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Aircraft Modes of Motion
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» Longitudinal Motions

A, (s)= (s2 + 28w, s + (1),,2)Ph(s2 +28w, s + a)nQ)SP

= | ateral-Directional Motions

A (s)=(s=Ag)(s— )»R)(s2 + 28w, s + a)nz)

DR

hazardous

= Wind inputs that
resonate with modes of
motion are especially

Natural frequency: o, ,rad/s
2
Natural Period: T, = ad

Natural Wavelength: L =V, T,,m

,sec
w

n
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Nonlinear-Inverse-Dynamic Control
... | J 1 1 | I I [9j

* Nonlinear system with additive control:
‘X(t)= fx(1)] +G[X(t)]u(t)‘

= Qutput vector:

y(t)=h[x(c)]

= Differentiate output until control appears in
each element of the derivative output:

¥ ()= 5 [x(1)] + G* [x(1)]u() 2 v(r)

* Inverting control law:

()= G * [x(0)] [ Ve = £ [x(1)]

Landing Abort using Nonlinear-
Inverse-Dynamic Control
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Wind Shear Safety Advisor

= Graduate research of Alexander Stratton
= LISP-based expert system

GROUND-BASED
DATA

AIRCRAFT

SYSTEMS

LLWAS

TDWR Interface ‘
PIREPS

Forecasts Ag}gﬁ%ﬁ ON-BOARD DATA
Weather data

Future products LOGIC Reactive sensors
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Weather radar
Forward-looking
Lightning sensors
Future products

Estimating the Probability of
Hazardous Microburst Encounter
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Geographical
Location

Surface Humidity
Precipitation

Time of Day
Lightning

= Bayesian Belief Network

= Infer probability of hazardous
encounter from

» pilot/control tower
repo rts Detection
Weather
 measurements
. Mod/Heavy
¢ location Turbulence

Probability of
Microburst Wind Shear

¢ time of day

Turbulence
Detection

Low-Level
‘Wind Shear Advisor
System

3

A
Airborne
Forward-Looking
Doppler Radar

Reactive Wind Shear
Alert System

Terminal Doppler
‘Weather Radar
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Aircraft as Wake Vortex
Generators and Receivers
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= Vorticity, I', generated by lift in 7-g flight

K w

— generator e 4

I
pVN b generator T

" Rolling acceleration response to vortex
aligned with the aircraft's longitudinal axis

1
Kreceiver E pV]\%Sb CL
p = 7 I K, iiver = 23V, b

ey

Rolling Response vs. Vortex-
Generating Strength for 125 Aircraft
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*= Undergraduate summer project of James Nichols
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