

## Frames of Reference



## Pitch Angle and Normal Velocity

Frequency Response to Axial Wind

- Pitch angle resonance at phugoid natural frequency
- Normal velocity (~ angle of attack) resonance at phugoid and short period natural frequencies



## Pitch Angle and Normal Velocity Frequency Response to Vertical Wind 

- Pitch angle resonance at phugoid and short period natural frequencies
- Normal velocity (~ angle of attack) resonance at short period natural frequency



## Sideslip and Roll Angle Frequency Response to Vortical Wind



- Sideslip angle resonance at Dutch roll natural frequency
- Roll angle is integral of vortical wind input



## Sideslip and Roll Angle Frequency Response to Side Wind

- Sideslip and roll angle resonance at Dutch roll natural frequency

 input are comparable



## Importance of Proper Response to Microburst Encounter <br> USAITFIIgII TOTO, Dougras vC-9, cnanote $\square \square \square \square \square \square \square$ <br> - Windshear alert issued as 1016 began descent along glideslope



- DC-9 encountered 61-kt windshear, executed missed approach
- Go-around procedure begun correctly -- aircraft's nose rotated up -- but power was not advanced
- Together with increasing tailwind, aircraft stalled
- Crew lowered nose to eliminate stall, but descent rate increased, causing ground impact
- Plane continued to descend, striking trees and telephone poles before impact


## Importance of Proper Response to Microburst Encounter



- Stormy evening July 2, 1994
- USAir Flight 1016, Douglas DC-9, Charlotte
- Windshear alert issued as 1016 began descent along glideslope
- DC-9 encountered 61-kt windshear, executed missed approach
- Plane continued to descend, striking trees and telephone poles before impact
- Go-around procedure was begun correctly -- aircraft's nose rotated up -- but power was not advanced
- That, together with increasing tailwind, caused the aircraft to stall
- Crew lowered nose to eliminate stall, but descent rate increased, causing ground impact

- Graduate Research of Sandeep Mulgund
- Altitude vs. Time

- FAA Windshear Training Aid, 1987, addresses proper operating procedures for suspected windshear
- Airspeed vs. Time

- Angle of Attack vs. Time




## Geometry and Flight Condition of Jet Transport Encounters with Wind Rotor

- Graduate research of Darin Spilman
- Flight Condition
- True Airspeed = 160 kt
- Altitude = 1000 ft AGL
- Flight Path Angle $=-3^{\circ}$
- Weight = 76,000 lb
- Flaps $=30^{\circ}$
- Open-Loop Control
- Wind Rotor
- Maximum Tangential Velocity = $125 \mathrm{ft} / \mathrm{s}$
- Core Radius = 200 ft



## Typical Flight Paths in Wind Rotor Encounter

 - from Spilman





## LQ/PIF Regulation of Wind Rotor Encounter 

- from Spilman




Page 10


- from FAA Wake Turbulence Training Aid, 1995



## Magnitude and Decay of B-757 Wake Vortex



- from Richard Page et al, FAA Technical Center



## NTSB Simulation of US Air 427 and FAA Wake Vortex Flight Test



USAir Flight 427
Aliquippa, PA
September 8, 1994
Boeing 737-300

- B-737 behind B-727 in FAA flight test
- Control actions subsequent to wake vortex encounter may be problematical
- US427 rudder known to be hard-over from DFDR


## Flying Into the Wake

Preliminary readings from American Airlines Flight 587's data recorder show that the Airbus A300 twice ran into lurbulence. After the second blast, the plane careened sideways seconds before it crashed. The turbulence apparently was caused by the wake of a Japan Airlines 747 flying ahead and above. Wake turbulence can last for minutes as it slowly drops and moves with prevailing winds.


NTSB Simulation of American Flight 587



## Causes of Clear Air Turbulence

## - from Bedard


(C) HYDRAULIC JUMP

(D) GRAVITY-SHEAR WAVES

## DC-10 Encounter with VortexInduced Clear Air Turbulence

- from Parks, Bach, Wingrove, and Mehta






## DC-8 and B-52H Encounters with Clear Air Turbulence

- DC-8: One engine and 12 ft of wing missing after CAT encounter over Rockies
- B-52 specially instrumented for air turbulence research after some operational B-52s were lost
- Vertical tail lost after a severe and sustained burst ( +5 sec ) of clear air turbulence violently buffeted the aircraft
- The Boeing test crew flew aircraft to Blytheville AFB, Arkansas and landed safely



## Conclusions

- Critical role of decision-making, alerting, and intelligence
- Reliance on human factors and counterintuitive strategies
- Need to review certification procedures
- Opportunity to reduce hazard through flight control system design
- Disturbance rejection
- Failure Accommodation
- Importance of Eternal vigilance



## Alternative Reference Frames for Translational Dynamics

- Earth-relative velocity in earthfixed polar coordinates:
- Earth-relative velocity in aircraft-fixed polar coordinates (zero wind):
- Body-frame air-mass-relative velocity:
- Airspeed, sideslip angle, angle of attack
$\mathbf{v}_{E}=\left[\begin{array}{c}V_{E} \\ \gamma \\ \xi\end{array}\right]$

- 



## Rigid-Body Equations of Motion

- Rate of change of Translational Position

$$
\dot{\mathbf{r}}_{I}=\mathbf{H}_{B}^{I} \mathbf{v}_{B}
$$

Rate of change of Angular Position

- Aerodynamic forces and moments depend on air-relative velocity vector, not the earth-relative velocity vector
- Rate of change of Translational Velocity

$$
\dot{\mathbf{v}}_{B}=\frac{1}{m} \mathbf{F}_{B}\left(\mathbf{v}_{A}\right)+\mathbf{H}_{I}^{B} \mathbf{g}_{I}-\tilde{\boldsymbol{\omega}}_{B} \mathbf{v}_{B}
$$

- Rate of change of Angular Velocity

$$
\dot{\omega}_{B}=I_{B}^{-1}\left[\mathbf{M}_{B}\left(\mathbf{v}_{A}\right)-\tilde{\omega}_{B} I_{B} \omega_{B}\right]
$$



## Wind Shear Distributions Exert Moments on Aircraft Through Damping Derivatives

- Gradient of wind produces different relative airspeeds over the surface of an aircraft
- Wind gradient expressed in body axes
$\mathbf{W}_{B}=\mathbf{H}_{E}^{B} \mathbf{W}_{E} \mathbf{H}_{B}^{E}$


3-dimensional wind field changes in space and time



## Aircraft Modes of Motion

- Longitudinal Motions

$$
\Delta_{L o n}(s)=\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)_{P h}\left(s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}\right)_{S P}
$$

- Lateral-Directional Motions

$$
\Delta_{L D}(s)=\left(s-\lambda_{S}\right)\left(s-\lambda_{R}\right)\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)_{D R}
$$

- Wind inputs that resonate with modes of motion are especially hazardous

Natural frequency: $\omega_{n}, \mathrm{rad} / \mathrm{s}$
Natural Period: $T_{n}=\frac{2 \pi}{\omega_{n}}$, sec
Natural Wavelength: $L_{n}=V_{N} T_{p}, m$

## Nonlinear-Inverse-Dynamic Control

- Nonlinear system with additive control:

$$
\dot{\mathbf{x}}(t)=\mathbf{f}[\mathbf{x}(t)]+\mathbf{G}[\mathbf{x}(t)] \mathbf{u}(t)
$$

- Output vector:

$$
\mathbf{y}(t)=\mathbf{h}[\mathbf{x}(t)]
$$

- Differentiate output until control appears in each element of the derivative output:

$$
\mathbf{y}^{(\alpha)}(t)=\mathbf{f} *[\mathbf{x}(t)]+\mathbf{G} *[\mathbf{x}(t)] \mathbf{u}(t) \triangleq \mathbf{v}(t)
$$

- Inverting control law:

$$
\mathbf{u}(t)=\mathbf{G} *[\mathbf{x}(t)]\left[\mathbf{v}_{\text {command }}-\mathbf{f} *[\mathbf{x}(t)]\right]
$$



## Wind Shear Safety Advisor

- Graduate research of Alexander Stratton
- LISP-based expert system



## Estimating the Probability of Hazardous Microburst Encounter

- Bayesian Belief Network
- Infer probability of hazardous encounter from
- pilot/control tower reports
- measurements
- location
- time of day



## Aircraft as Wake Vortex Generators and Receivers

- Vorticity, $\Gamma$, generated by lift in 1-g flight

$$
\begin{equation*}
\Gamma=\frac{K_{\text {generator }} W}{\rho V_{N} b} \tag{geereatar}
\end{equation*}
$$

- Rolling acceleration response to vortex aligned with the aircraft's longitudinal axis

$$
\dot{p}=\frac{K_{\text {receiver }} \frac{1}{2} \rho V_{N}^{2} S b}{I_{x x}} \Gamma
$$

$$
K_{\text {receiver }} \simeq \frac{C_{L_{\alpha}}}{2 \pi V_{N} b}
$$

## Rolling Response vs. VortexGenerating Strength for 125 Aircraft

- Undergraduate summer project of James Nichols


