Aerodynamic Moments (i.e., Torques)

Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Learning Objectives

- Aerodynamic balance and moment
- Aerodynamic center, center of pressure, neutral point, and static margin
- Configuration and angle-of-attack effects on pitching moment and stability
- Configuration and sideslip-angle effects on lateral-directional (i.e., rolling and yawing) aerodynamic moments
- Tail design effects on airplane aerodynamics

Copyright 2018 by Robert Stengel. All rights reserved. For educational use only.
http://www.princeton.edu/~stengel/MAE331.html

http://www.princeton.edu/~stengel/FlightDvnamics.html

Review Questions

- Why is induced drag proportional to angle of attack squared?
- What spanwise lift distribution gives minimum induced
- Why can lift and drag coefficients be approximated by the Newtonian-flow assumption at very high angle of attack?
- How does profile drag vary with Mach number?
- What are some functions of secondary wing structures?
- What is the primary function of leading edge extensions?
- What is the "Area Rule"?

Handbook Approach to Aerodynamic Estimation

- · Build estimates from component effects
 - Technical reports, textbooks, ...
 - USAF Stability and Control DATCOM (download at http://www.pdas.com/datcomb.html)
 - USAF Digital DATCOM (see Wikipedia page)
 - ESDU Data Sheets (see Wikipedia page)

Moments of the Airplane

Airplane Balance

- · Conventional aft-tail configuration
 - c.m. near wing's aerodynamic center [point at which wing's pitching moment coefficient is invariant with angle of attack ~25% mean aerodynamic chord (mac)]
- <u>Tailless airplane</u>: c.m. ahead of the <u>neutral point</u>

5

Airplane Balance

- Canard configuration:
 - Neutral point moved forward by canard surfaces
 - Center of mass may be behind the neutral point, requiring closed-loop stabilization
- Fly-by-wire feedback control can expand envelope of allowable center-of-mass locations

Moment Produced By
Force on a Particle

Cross Product of Vectors

$$\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\mathbf{r} \times \mathbf{f} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x & y & z \\
f_x & f_y & f_z
\end{vmatrix} = (yf_z - zf_y)\mathbf{i} + (zf_x - xf_z)\mathbf{j} + (xf_y - yf_x)\mathbf{k}$$

$$\mathbf{m} = \begin{bmatrix}
m_x \\
m_y \\
m_z
\end{bmatrix} = \begin{bmatrix}
(yf_z - zf_y) \\
(zf_x - xf_z) \\
(xf_y - yf_x)
\end{bmatrix} = \mathbf{r} \times \mathbf{f} \triangleq \tilde{\mathbf{r}} \mathbf{f} = \begin{bmatrix}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{bmatrix} \begin{bmatrix}
f_x \\
f_y \\
f_z
\end{bmatrix}_{7}$$

Pitching Moment of the Airplane

Pitching Moment

(moment about the y axis)

Pressure and shear stress differentials x moment arms

Integrate over the airplane surface to produce a net pitching moment

Body - Axis Pitching Moment = M_R

$$= -\iint_{surface} \left[\Delta p_z(x, y) + \Delta s_z(x, y) \right] (x - x_{cm}) dx dy$$

$$+ \iint_{surface} \left[\Delta p_x(y, z) + \Delta s_x(y, z) \right] \Delta p_x(z - z_{cm}) dy dz$$

$$+ \iint_{surface} \left[\Delta p_x(y,z) + \Delta s_x(y,z) \right] \Delta p_x(z-z_{cm}) dy dz$$

13

Pitching Moment (moment about the y axis)

Distributed effects can be aggregated to local centers of pressure indexed by i

$$M_B \approx -\sum_{i=1}^{I} Z_i (x_i - x_{cm}) + \sum_{i=1}^{I} X_i (z_i - z_{cm})$$

+Interference Effects + Pure Couples

Net effect expressed as

$$M_{B} = C_{m} \overline{q} \, S \overline{c}$$

Net Center of Pressure

Local centers of pressure can be aggregated at a net center of pressure (or neutral point) along the body x axis

Static Margin

- Static margin (SM) reflects the distance between the center of mass (cm) and the net center of pressure (cp)
 - Body axes
 - · Normalized by mean aerodynamic chord
 - Does not reflect z position of center of pressure
- Positive SM if cp is behind cm

Static Margin
$$\triangleq SM = \frac{100(x_{cm} - x_{cp_{net}})_B}{\overline{c}}, \%$$

$$\equiv 100(h_{cm} - h_{cp_{net}})\%$$

$$h_{cm} \triangleq \frac{x_{cm}}{\overline{c}}$$

- Zero crossing determines trim angle of attack,
 i.e., sum of moments = 0
- Negative slope required for static stability
- Slope, $\partial C_m/\partial a$, varies with static margin

Pitch-Moment Coefficient Sensitivity to Angle of Attack

For small angle of attack and no control deflection

$$\begin{split} C_{m_{\alpha}} &\approx -C_{N_{\alpha_{net}}} \left(h_{cm} - h_{cp_{net}} \right) \approx -C_{\underline{L}_{\alpha_{net}}} \left(h_{cm} - h_{cp_{net}} \right) \\ &\approx -C_{\underline{L}_{\alpha_{wing}}} \left(\frac{x_{cm} - x_{cp_{wing}}}{\overline{c}} \right) - C_{\underline{L}_{\alpha_{ht}}} \left(\frac{x_{cm} - x_{cp_{ht}}}{\overline{c}} \right) \end{split}$$

referenced to wing area, S

21

Horizontal Tail Lift Sensitivity to Angle of Attack

$$\left[\left(C_{L_{\alpha_{ht}}}\right)_{\substack{horizontal \\ tail}}\right]_{ref=S} = \left(C_{L_{\alpha_{ht}}}\right)_{ref=S_{ht}} \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) \eta_{elas} \left(\frac{S_{ht}}{S}\right) \left(\frac{V_{ht}}{V_{N}}\right)^{2}$$

 V_{ht} : Airspeed at horizontal tail

: **Downwash angle** due to wing at tail

 $\partial \varepsilon / \partial \alpha$: Sensitivity of downwash to angle of attack

 $\eta_{\it elas}$: Aeroelastic effect

- <u>Downwash</u> effect on aft horizontal tail
- Upwash effect on a canard (i.e., forward) surface

Aerodynamic Center and Center of Pressure of a Wing

$$x_{ac} = x$$
 for which $\frac{\partial C_m}{\partial \alpha} \equiv 0$
= x_{cp} for a symmetric airfoil

 $\neq x_{cp}$ for an asymmetric airfoil

Effect of Static Margin on Pitching Moment

For small angle of attack and no control deflection

$$M_{B} = C_{m}\overline{q} \, S\overline{c} \approx \left[C_{m_{o}} - C_{N_{\alpha}} \left(h_{cm} - h_{cp_{net}}\right)\alpha\right]\overline{q} \, S\overline{c}$$

$$\approx \left[C_{m_{o}} - C_{L_{\alpha}} \left(h_{cm} - h_{cp_{net}}\right)\alpha\right]\overline{q} \, S\overline{c}$$

Effect of Static Margin on Pitching Moment

Sum of moments is zero in trimmed condition

$$M_{B} = (C_{m_{o}} + C_{m_{\alpha}}\alpha)\overline{q} S\overline{c}$$

$$= 0 \quad \text{in trimmed (equilibrium) flight}$$

Typically, static margin is positive and $\partial C_m/\partial \alpha$ is negative for static pitch stability

25

Effect of Elevator Deflection on Pitching Coefficient

Control deflection shifts curve up and down, affecting trim angle of attack

Historical Factoids Aviation in The Great War

- 1914-18: World War I changes the complexion of flying
 - Reconnaissance
 - Air superiority (dog fights)
 - Bombing
 - Personal transport
- Wrights' US monopoly broken by licensing for war effort
- · Aircraft Design
 - Biplanes, a few mono- and triplanes
 - Design for practical functions
 - Multiple engines, larger aircraft
 - Aft tails
 - Increased maneuverability, speed, g-loads, altitude
 - Improved piston engines
 - Tractor propellers

27

Maneuvering World War I Aircraft

- Maneuverable aircraft with idiosyncrasies
 - Rotary engine
 - Small tail surfaces
 - Reliability issues
- Maneuvering to stalls and spins
- Snap roll: rudder and elevator
- · Barrel roll: aileron
- Cross-control (e.g., right rudder, left stick)
 - glide path control during landing
 - good view of landing point
- Unintended snap rolls led to spins and accidents during takeoff or landing

DeHavilland DH-2

Fokker E.III

Sopwith Triplane

http://www..com/watch?v=6ETc1mNNQg8youtube

http://www.youtube.com/watch?v=OBH_Mb0Kj2s

Stability OR Control?

Stability AND Control

- Need for better understanding of Flying (or Handling) Qualities
 - Stability and controllability characteristics as perceived by the pilot
- Desired attributes: Stability of the S.E.-5 and controllability of the D.VII

29

Lateral-Directional Effects of Sideslip Angle

Rolling and Yawing Moments of the Airplane

Distributed effects can be aggregated to local centers of pressure indexed by i

Rolling Moment

$$L_{B} \approx \sum_{i=1}^{I} Z_{i} (y_{i} - y_{cm}) - \sum_{i=1}^{I} Y_{i} (z_{i} - z_{cm})$$

+Interference Effects + Pure Couples

Yawing Moment

$$N_B \approx \sum_{i=1}^{I} Y_i (x_i - x_{cm}) - \sum_{i=1}^{I} X_i (y_i - y_{cm})$$

+Interference Effects + Pure Couples

31

Sideslip Angle Produces Side Force, Yawing Moment, and Rolling Moment

Side Force due to Sideslip Angle

$$Y \approx \frac{\partial C_Y}{\partial \beta} \overline{q} S \bullet \beta = C_{Y_\beta} \overline{q} S \bullet \beta$$

Fuselage, vertical tail, nacelles, and wing are main contributors

$$C_{Y_{\beta}} \approx \left(C_{Y_{\beta}}\right)_{Fuselage} + \left(C_{Y_{\beta}}\right)_{Vertical\ Tail} + \left(C_{Y_{\beta}}\right)_{Nacelles} + \left(C_{Y_{\beta}}\right)_{Wing}$$

S = reference area

33

Side Force due to Sideslip Angle

$$\begin{split} \left(C_{Y_{\beta}}\right)_{Vertical\ Tail} &\approx \left(\frac{\partial C_{Y}}{\partial \beta}\right)_{ref=\ S_{vt}} \eta_{vt} \left(\frac{S_{vt}}{S}\right) \\ &\left(C_{Y_{\beta}}\right)_{Fuselage} \approx -2\frac{S_{Base}}{S}; \quad S_{B} = \frac{\pi d_{Base}^{2}}{4} \\ &\left(C_{Y_{\beta}}\right)_{Wing} \approx -C_{D_{Parasite}, Wing} - k\Gamma^{2} \end{split}$$

 η_{vt} = Vertical tail efficiency (p. 96, *Flight Dynamics*)

$$k = \frac{\pi AR}{1 + \sqrt{1 + AR^2}}$$

 Γ = Wing dihedral angle, rad

Yawing Moment due to Sideslip Angle

$$N \approx \frac{\partial C_n}{\partial \beta} \left(\frac{\rho V^2}{2} \right) Sb \bullet \beta = C_{n_\beta} \overline{q} Sb \bullet \beta$$

- Side force contributions times respective moment arms
 - Non-dimensional stability derivative

S = reference area

35

Yawing Moment due to Sideslip Angle

Vertical tail contribution

$$\left(C_{n_{\beta}}\right)_{Vertical\ Tail} \approx -C_{Y_{\beta_{vl}}} \eta_{vt} \frac{S_{vt} l_{vt}}{Sb} \triangleq -C_{Y_{\beta_{vl}}} \eta_{vt} V_{VT}$$

 $l_{vt} \triangleq Vertical tail length (+)$

= distance from center of mass to tail center of pressure

= $x_{cm} - x_{cp_{vt}}$ [x is positive forward; both are negative numbers]

$$\eta_{vt} = \eta_{elas} \left(1 + \frac{\partial \sigma}{\partial \beta} \right) \left(\frac{V_{vt}^2}{V_N^2} \right)$$

 $V_{VT} = \frac{S_{vt}l_{vt}}{Sh} =$ Vertical Tail Volume Ratio

Yawing Moment due to Sideslip Angle

Fuselage contribution

$$\left(C_{n_{\beta}}\right)_{Fuselage} = \frac{-2K \ Volume_{Fuselage}}{Sb}$$
Wing (differential lift and induced drag) contribution

$$\left(C_{n_{\beta}}\right)_{Wing} = 0.075C_{L_{N}}\Gamma + fcn(\Lambda, AR, \lambda)C_{L_{N}}^{2}$$

$$\triangleq k_{0}C_{L_{N}}\Gamma + k_{1}C_{L_{N}}^{2} \text{ (eq. 2.4-66, } Flight \ Dynamics)}$$
Seckel, from NACA TR-1098, 1950

37

Rolling Moment due to Sideslip Angle

- Wing vertical location effect: Crossflow produces up- and down-wash
 - Rolling effect depends on vertical location of the wing

· Vertical tail effect

Tail Design Effects

Tail Design Effects

- Aerodynamics analogous to those of the wing
- Longitudinal stability
 - Horizontal stabilizer
 - Short period natural frequency and damping
- · Directional stability
 - Vertical stabilizer (fin)
 - · Ventral fins
 - Strakes
 - Leading-edge extensions
 - · Multiple surfaces
 - · Butterfly (V) tail
 - Dutch roll natural frequency and damping
- Stall or spin prevention/ recovery
- Avoid rudder lock (TBD)

41

Horizontal Tail Size and Location

- 15-30% of wing area
- ~ wing semi-span behind the c.m.
- Must trim neutrally stable airplane at maximum lift in ground effect
- Effect on short period mode
- Horizontal Tail Volume: Typical value = 0.48

$$V_{HT} = \frac{S_{ht}}{S} \frac{l_{ht}}{\overline{c}}$$

Tail Moment Sensitivity to Angle of Attack

$$\begin{split} C_{m_{\alpha_{ht}}} &= - \Big(C_{L_{\alpha_{ht}}} \Big)_{ht} \left(\frac{V_{ht}}{V_{N}} \right)^{2} \bigg(1 - \frac{\partial \varepsilon}{\partial \alpha} \bigg) \eta_{elas} \left[\left(\frac{S_{ht}}{S} \right) \left(\frac{l_{ht}}{\overline{c}} \right) \right] \\ &= - \Big(C_{L_{\alpha_{ht}}} \Big)_{ht} \left(\frac{V_{ht}}{V_{N}} \right)^{2} \bigg(1 - \frac{\partial \varepsilon}{\partial \alpha} \bigg) \eta_{elas} V_{HT} \end{split}$$

$$V_{HT} = \frac{S_{ht}l_{ht}}{S\overline{c}} =$$
 Horizontal Tail Volume Ratio

43

Pitching Moment due to Elevator Deflection

Normal force coefficient variation due to elevator deflection

$$C_{L_{\delta E}} \triangleq \frac{\partial C_L}{\partial \delta E} = \tau_{ht} \eta_{ht} \left(C_{L_{\alpha}} \right)_{ht} \frac{S_{ht}}{S} \approx C_{N_{\delta E}}$$

$$\Delta C_N = C_{N_{\delta E}} \delta E$$

$$C_{N_{\delta E}} = C_{\text{anyover effect}}$$

$$\sigma_{\text{th}} = C_{\text{th}}$$

Pitching moment coefficient variation due to elevator deflection

$$egin{aligned} C_{m_{\delta E}} &= C_{N_{\delta E}} rac{l_{ht}}{\overline{c}} pprox - au_{ht} oldsymbol{\eta}_{ht} \Big(C_{L_{lpha}} \Big)_{ht} \Big(rac{S_{ht}}{S} rac{l_{ht}}{\overline{c}} \Big) \ &= - au_{ht} oldsymbol{\eta}_{ht} \Big(C_{L_{lpha}} \Big)_{ht} oldsymbol{V_{HT}} \end{aligned}$$

Downwash and Elasticity Also Effect Elevator Sensitivity

$$\left[\left(\frac{\partial C_L}{\partial \delta E} \right)_{ht} \right]_{ref = S} = \left(C_{L_{\delta E}} \right)_{ref = S} = \left(C_{L_{\delta E}} \right)_{ref = S_{ht}} \left(\frac{V_{tail}}{V_N} \right)^2 \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \eta_{elas} \left(\frac{S_{ht}}{S} \right)$$

45

Vertical Tail Location and Size

- · Analogous to horizontal tail volume
- · Effect on Dutch roll mode
- Powerful rudder for spin recovery
 - Full-length rudder located behind the elevator
 - High horizontal tail so as not to block the flow over the rudder
- Vertical Tail Volume: Typical value = 0.18

$$V_{VT} = \frac{S_{vt}}{S} \frac{l_{vt}}{b}$$

Otto Koppen: "If they build more than one of these, they're crazy!" http://en.wikipedia.org/wiki/Otto_C._Koppen

47

Yawing Moment due to Rudder Deflection

Side force coefficient variation due to rudder deflection

$$(C_{Y_{\delta R}})_{ref=S} \triangleq \left(\frac{\partial C_{Y}}{\partial \delta R}\right)_{ref=S} = \left[\left(C_{L_{\alpha}}\right)_{vt}\right]_{ref=S_{vt}} \tau_{vt} \eta_{vt} \frac{S_{vt}}{S}$$

$$\Delta C_{Y} = C_{Y_{\delta R}} \delta R$$

Yawing moment coefficient variation due to rudder deflection

$$\begin{split} \left(C_{n_{\delta R}}\right)_{ref=S} &= -\left(C_{Y_{\delta R}}\right)_{ref=S} \frac{l_{vt}}{b} \approx -\left[\left(C_{L_{\alpha}}\right)_{vt}\right]_{ref=S_{vt}} \tau_{vt} \eta_{vt} \left(\frac{S_{vt}}{S} \frac{l_{vt}}{b}\right) \\ &= -\tau_{vt} \eta_{vt} \left[\left(C_{L_{\alpha}}\right)_{vt}\right]_{ref=S_{vt}} V_{VT} \end{split}$$

Rolling Moment due to Aileron Deflection

$$L \approx C_{l_{L_{\delta A}}} \overline{q} Sb \bullet \delta A$$

For a trapezoidal planform, subsonic flow

$$\left(C_{l_{\delta A}}\right)_{3D} \simeq \left(\frac{C_{L_{\delta}}}{C_{L_{a}}}\right)_{2D} \frac{\left(C_{L_{a}}\right)_{3D}}{1+\lambda} \left[\frac{1-k^{2}}{3} - \frac{1-k^{3}}{3}(1-\lambda)\right]$$

 $k \triangleq \frac{y}{b/2}$, y = Inner edge of aileron, $\lambda = \text{Taper ratio}$

49

Next Time: Aircraft Performance

Reading:

Flight Dynamics

Aerodynamic Coefficients, 118-130

Learning Objectives

Definitions of airspeed

Performance parameters

Steady cruising flight conditions

Breguet range equations

Optimize cruising flight for minimum thrust and power Flight envelope

Supplemental Material

51

Sopwith Camel

- Rotary engine induced gyroscopic coupling
- Highly maneuverable
- Aft fuel tank; when full, center of mass was too far aft for stability
- Vertical tail too small, spin recovery not automatic with centering of controls

http://www.youtube.com/watch?v=3ApowyEXSXM

S.E.-5 vs. Fokker D.VII

- RAF S.E.-5: theoretical approach to design
 - "Best WWI design from the Royal Aircraft Factory"
 - Stationary engine
 - High dihedral
 - Stable spiral mode
 - High control forces
 - Poor maneuverability
 - Relatively safe and effective
- Fokker D.VII: empirical approach to design
 - Horn balances to reduce control forces
 - Stationary engine
 - Neutral-to-negative stability
 - Good maneuverability
 - Relatively dangerous

53

Planform Effect on Center of Pressure Variation with Mach Number

- Straight Wing
 - Subsonic center of pressure (c.p.) at ~1/4 mean aerodynamic chord (m.a.c.)
 - Transonic-supersonic c.p. at ~1/2 m.a.c.
- Delta Wing
 - Subsonic-supersonic c.p. at ~2/3 m.a.c.

Pitch Up: Explanation of C_L vs. C_m Cross-plot

- Crossplot C_L vs. C_m to obtain plots such as those shown on previous slide
- Positive break in C_m is due to forward movement of net center of pressure, decreasing static margin

https://www.youtube.com/watch?v=Q2qqKwndFW0

59

Shortal-Maggin Longitudinal Stability Boundary for Swept Wings

- Stable or unstable pitch break at the stall
- Stability boundary is expressed as a function of
 - Aspect ratio
 - Sweep angle of the quarter chord
 - Taper ratio

Horizontal Tail Location

- Horizontal tail and elevator in wing wake at selected angles of attack
- Effectiveness of high-mounted elevator is unaffected by wing wake at low to moderate angle of attack
- Effectiveness of low tail is unaffected by wing wake at high angle of attack

61

Twin and Triple Vertical Tails

- · Increased tail area with no increase in vertical height
- End-plate effect for horizontal tail improves effectiveness
- Proximity to propeller slipstream

Ventral Fin Effects

Increase directional stability

Counter roll due to sideslip of the dorsal fin

63

V (Butterfly) Tails

- Analogous to conventional tail at low angles of attack and sideslip
- Control surface deflection
 - Sum: Pitch control
 - Difference: Yaw control
- Nonlinear effects at high angle of attack are quite different from conventional tail

Beechcraft Bonanza

Effects of Wing Aspect Ratio and Sweep Angle

- Lift slope
- · Pitching moment slope
- · Lift-to-drag ratio
- · All contribute to
 - Phugoid damping
 - Short period natural frequency and damping
 - Roll damping

65

Effects of Wing Aspect Ratio

- Neglecting air compressibility
- · Angles of attack below stall

Lift slope

$$C_{L_{u_{ming}}} = \frac{\pi AR}{\left[1 + \sqrt{1 + \left(\frac{AR}{2}\right)^2}\right]}$$

$$C_{m_{\alpha}} \approx -C_{L_{\alpha_{looked}}} \left(\frac{\text{Static Margin (\%)}}{100} \right)$$

Lift-to-drag ratio

$$L_{D}' = \frac{C_{L_{votal}}}{\left(C_{D_o} + \varepsilon C_L^2\right)_{total}} = \frac{\left(C_{L_o} + C_{L_{\alpha}}\alpha\right)_{total}}{\left[C_{D_o} + \varepsilon C_L^2\right]_{total}}$$

Roll damping

Wing with taper

$$\left(C_{l_{\hat{p}}}\right)_{wing} = \frac{\partial \left(\Delta C_{l}\right)_{wing}}{\partial \hat{p}} = -\frac{C_{L_{\alpha_{wing}}}}{12} \left(\frac{1+3\lambda}{1+\lambda}\right)$$

$$\left(C_{l_{\hat{p}}}\right)_{Wing} = -\frac{\pi AR}{32}$$

Propeller Effects

- · Slipstream over wing, tail, and fuselage
 - Increased dynamic pressure
 - Swirl of flow
 - Downwash and sidewash at the tail
- DH-2 unstable with engine out
- · Single- and multi-engine effects
- Design factors: fin offset (correct at one airspeed only), c.m. offset
- Propeller fin effect: Visualize lateral/horizontal projections of the propeller as forward surfaces
- Contra-rotating propellers minimize torque and swirl

6

Jet Effects on Rigid-Body Motion

- Normal force at intake (analogous to propeller fin effect) (F-86)
- Deflection of airflow past tail due to entrainment in exhaust (F/A-18)
- · Pitch and yaw damping due to internal exhaust flow
- Angular momentum of rotating machinery

Loss of Engine

- Loss of engine produces large yawing (and sometimes rolling) moment(s), requiring major application of controls
- Engine-out training can be as hazardous, especially during takeoff, for both propeller and jet aircraft
- Acute problem for general-aviation pilots graduating from single-engine aircraft

69

Configurational Solutions to the Engine-Out Problem

- Engines on the centerline (Cessna 337 Skymaster)
- More engines (B-36)
- · Cross-shafting of engines (V-22)
- Large vertical tail (Boeing 737)

Some Videos

XF-92A, 1948

http://www.youtube.com/watch?v=hVjaiMXvCTQ

First flight of B-58 Hustler, 1956

http://www.youtube.com/watch?v=saeejPWQTHw

Century series fighters, bombers, 1959

http://www.youtube.com/watch?v=WmseXJ7DV4c&feature=related

Bird of Prey, 1990s, and X-45, 2000s

http://www.youtube.com/watch?v=BMcuVhzCrX8&feature=related

YF-12A supersonic flight past the sun

http://www.youtube.com/watch?v=atltRcfFwgw&feature=related
Supersonic flight, sonic booms

http://www.youtube.com/watch?v=gWGLAAYdbbc&list=LP93BKTqpxb QU&index=1&feature=plcp

71

Pitch-Moment Coefficient Sensitivity to Angle of Attack

For small angle of attack and no control deflection

$$M_{B} = C_{m}\overline{q} \, S\overline{c} \approx \left(C_{m_{o}} + C_{m_{\alpha}}\alpha\right)\overline{q} \, S\overline{c}$$

